Cliquez sur les images pour acquérir mes livres : frais de port gratuits et envoi rapide.

Pour suivre mon actualité ou me contacter : sur Facebook.

Comment prendre ses oméga 3 de manière optimale?

29/07/2015 | Etudes Compléments alimentaires et Etudes Perte de poids et Etudes Anti-âge

 

Petite dose tous les jours ou grosses doses peu fréquentes?

What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids—Daily vs. Weekly Administration of Fish Oil?
Nutrients 2015, 7(7), 5628-5645;  Samaneh Ghasemifard

The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish (“once to twice per week”) to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (“250–500 mg per day”). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content.

The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (β-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose).

These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.

Compared with daily, weekly n-3 PUFA intake affects the incorporation of eicosapentaenoic acid and docosahexaenoic acid into platelets and mononuclear cells in humans.
J Nutr. 2014 May;144(5):667-72.        Browning LM

Consumption of oily fish is sporadic, whereas controlled intervention studies of n-3 (ω-3) fatty acids usually provide capsules containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as a daily dose. This methodologic study explored whether there are differences in the short-, medium-, and long-term incorporation of EPA and DHA into blood plasma and cells with the provision of identical amounts of EPA and DHA, equivalent to 2 oily fish servings per week (or 6.54 g/wk EPA and DHA), either intermittently (i.e., 1 portion twice per week) or continuously (i.e., divided into daily amounts). The study was part of a randomized, double-blind controlled intervention lasting 12 mo, with participants stratified by age and sex. There were 5 intervention groups, 2 of which are reported here: the 2 intermittent portions (2I) and 2 continuous portions (2C) groups. EPA and DHA were measured in plasma phosphatidylcholine, platelets, and blood mononuclear cells (MNCs) at 9 time points. Sixty-five participants completed the study (2I group, n = 30, mean age of 49.2 y; 2C group, n = 35, mean age of 50.6 y). The incorporation pattern over the 12-mo intervention was different between the 2 groups in all samples (P

< 0.0001, time × treatment interaction).

At the end of the 12-mo intervention, the 2C group had higher EPA, DHA, and EPA + DHA in platelets (all P < 0.01) and higher EPA and EPA + DHA in MNCs (both P < 0.05) compared with the 2I group. No significant differences were shown for plasma phosphatidylcholine EPA (P = 0.1), DHA (P = 0.15), EPA + DHA (P = 0.07), or MNC DHA (P = 0.06). In conclusion, the pattern of consumption does affect the incorporation of EPA and DHA into cells used as biomarkers of intake. The differences identified here need to be considered in the design of studies and when extrapolating results from continuous capsule-based intervention studies to dietary guidelines for oily fish consumption.

Partagez :

Voir aussi :


Commenter

Commenting is not available in this weblog entry.