Musculation des pectoraux

Comment la souplesse thoracique augmente-t’elle?

26/05/2019 | Musculation des pectoraux et Etudes Musculation

 

Effect of intercostal muscle contraction on rib motion in humans studied by finite element analysis
Guangzhi Zhang   japplphysiol.00995.2017

The effect of intercostal muscle contraction on generating rib motion has been investigated for a long time and is still controversial in physiology. This may be because of the complicated structure of the rib cage, making direct prediction of the relationship between intercostal muscle force and rib movement impossible. Finite element analysis is a useful tool that is good at solving complex structural mechanic problems.

In this study, we individually activated the intercostal muscle groups from the dorsal to ventral portions and obtained five different rib motions classified based on rib moving directions. We found that the ribs cannot only rigidly rotate around the spinal joint but also be deformed, particularly around the relatively soft costal cartilages, where the moment of muscle force for the rigid rotation is small. Although the intercostal muscles near the costal cartilages cannot generate a large moment to rotate the ribs, the muscles may still have a potential to deform the costal cartilages and contribute to the expansion and contraction of the rib cage based on the force-length relationship.

Our results also indicated that this potential is matched well with the special shape of the costal cartilages, which become progressively oblique in the caudal direction. Compared with the traditional explanation of rib motion, by additionally considering the effect from the tissue deformation, we found that the special structure of the ventral portion of the human rib cage could be of mechanical benefit to the intercostal muscles, generating inspiratory and expiratory rib motions.

NEW & NOTEWORTHY Compared with the traditional explanation of rib motion, additionally considering the effect from tissue deformation helps us understand the special structure of the ventral portion of the human rib cage, such that the costal cartilages progressively become oblique and the costochondral junction angles gradually change into nearly right angles from the upper to lower ribs, which could be of mechanical benefit to the intercostal muscles in the ventral portion, generating inspiratory and expiratory rib motions.

Michael Gundill fait un superset pour le haut de pec

10/01/2014 | Musculation des pectoraux

 

Michael Gundill fait du wide grip hammer strength pour les pecs

28/04/2013 | Musculation des pectoraux

 

Michael Gundill fait un superset pour le haut de pectoraux

23/04/2013 | Musculation des pectoraux

 

L’entraînement sur surface instable est contre-productif

29/03/2013 | Musculation des pectoraux et Accessoires de musculation et Etudes Musculation

 

Electromyographic Activity and 6RM Strength in Bench Press on Stable and Unstable Surfaces
Journal of Strength & Conditioning Research: April 2013 - Volume 27 - Issue 4 - p 1101–1107     Saeterbakken, Atle H

The purpose of the study was to compare 6-repetition maximum (6RM) loads and muscle activity in bench press on 3 surfaces, namely, stable bench, balance cushion, and Swiss ball. Sixteen healthy, resistance-trained men (age 22.5 ± 2.0 years, stature 1.82 ± 6.6 m, and body mass 82.0 ± 7.8 kg) volunteered for 3 habituation/strength testing sessions and 1 experimental session. In randomized order on the 3 surfaces, 6RM strength and electromyographic activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were assessed. Relative to stable bench, the 6RM strength was approximately 93% for balance cushion (p ≤ 0.001) and approximately 92% for Swiss ball (p = 0.008); the

pectoralis major electromyographic (EMG) activity was approximately 90% using the balance cushion (p = 0.080) and approximately 81% using Swiss ball (p = 0.006); the triceps EMG was approximately 79% using the balance cushion (p = 0.028) and approximately 69% using the Swiss ball

(p = 0.002). Relative to balance cushion, the EMG activity in pectoralis, triceps, and erector spinae using Swiss ball was approximately 89% (p = 0.016), approximately 88% (p = 0.014) and approximately 80% (p = 0.020), respectively. In rectus abdominis, the EMG activity relative to Swiss ball was approximately 69% using stable bench (p = 0.042) and approximately 65% using the balance cushion (p = 0.046). Similar EMG activities between stable and unstable surfaces were observed for deltoid anterior, biceps brachii, and oblique external. In conclusion, stable bench press had greater 6RM strength and triceps and pectoralis EMG activity compared with the unstable surfaces.

These findings have implications for athletic training and rehabilitation, because they demonstrate an inferior effect of unstable surfaces on muscle activation of prime movers and strength in bench press. If an unstable surface in bench press is desirable, a balance cushion should be chosen instead of a Swiss ball.

Michael Gundill fait des supersets non-stop pour les pecs sur machines Nautilus et Precor

10/11/2012 | Musculation des pectoraux

 

Michael Gundill fait un rappel haut de pec

01/11/2012 | Musculation des pectoraux

 

Page 1 sur 7 pages  1 2 3 >  Last »