Etudes Anti-âge : page 3.8

Deca dick?

14/02/2018 | Etudes sur les hormones et Etudes Anti-âge

 

Nandrolone combined with strenuous resistance training reduces vascular nitric oxide bioavailability and impairs endothelium-dependent vasodilation
Steroids Volume 131, March 2018, Pages 7-13     ViniciusGuzzoni

Highlights
• Nandrolone plus strenuous RT impairs acetylcholine-mediated aorta vasodilation.
• Nandrolone plus strenuous RT increased reactive species of oxygen levels.
• Nandrolone plus strenuous RT dramatically reduced vascular NO bioavailability.
• Nandrolone plus strenuous RT increased arterial wall thickness.
• Combination of nandrolone and strenuous RT might lead endothelial dysfunction.

Anabolic Androgenic Steroids (AASs) misuse has increased among adolescents and recreational athletes due to their potential effects on muscle hypertrophy. On the other hand, AAS might induce alterations on cardiovascular system, although some controversies regarding AAS on vascular properties remain unknown. To address this question, we aimed to investigate the effects of high doses of nandrolone combined with strenuous resistance training (RT) on function and structure of thoracic aorta. Rats were randomized into four groups: non-trained vehicle (NTV), trained vehicle (TV), non-trained nandrolone (NTN), and trained nandrolone (TN), and submitted to 6 weeks of treatment with nandrolone (5 mg/kg, twice a week) and/or resistance training. In vitro response of thoracic aorta to acetylcholine (ACh) was analyzed. Vascular nitric oxide (NO) and reactive oxygen species (ROS) synthesis were evaluated using 4,5-diaminofluorescein diacetate (DAF-2) and hydroethidine fluorescent techniques, respectively. Thoracic aorta was processed for microscopy analyses and tunica media thickness was measured. ACh-mediated relaxation response was impaired in endothelium intact aortic rings isolated from trained rats (TV and TN) as compared with their matched non-trained groups. TN rats showed reduced ACh-mediated vasodilatation than NTN rats. NO production and bioavailability decreased in thoracic aorta of nandrolone-treated rats in relation to their matched non-trained group (NTN vs. NTV; TN vs. TV). ROS production and tunica media thickness were increased in TN rats when compared with TV rats.

These findings indicate that high doses of nandrolone combined with strenuous RT affect NO bioavailability and might induce endothelial dysfunction and arterial morphological alterations.

Les oméga 6 sont-ils pro- ou anti-inflammatoires?

14/12/2017 | Etudes Anti-âge

 

The associations of serum n-6 polyunsaturated fatty acids with serum C-reactive protein in men: the Kuopio Ischaemic Heart Disease Risk Factor Study
Jyrki K. Virtanen               European Journal of Clinical Nutrition (2017)


There are concerns that high intake of n-6 polyunsaturated fatty acids (PUFA) may promote inflammation, because the end-product of n-6 PUFA metabolism, arachidonic acid, is a precursor for pro-inflammatory eicosanoids. Our aim was to investigate cross-sectional associations of the serum n-6 PUFAs, objective biomarkers for exposure, with serum high-sensitivity C-reactive protein (CRP), a key inflammation marker.

Subjects/methods
The study included 1287 generally healthy men aged 42–60 years from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study, examined in 1984–1989. ANCOVA and logistic regression were used for analyses.

Results
In the multivariable-adjusted analyses, both serum total n-6 PUFA and linoleic acid, the predominant n-6 PUFA, were associated with lower CRP. The mean CRP concentrations in quartiles of linoleic acid were 1.86, 1.51, 1.53, and 1.37 mg/L (P-trend = 0.001). The odds ratio for elevated CRP (>3 mg/L) in the highest vs. the lowest quartile was 0.47 (95% confidence interval (CI) 0.25–0.87, P-trend = 0.01). Arachidonic acid or the mainly endogenously produced n-6 PUFAs, gamma-linolenic acid and dihomo-gamma-linolenic acid, were not associated with higher CRP, either. Age, body mass index, or serum long-chain n-3 PUFA concentration did not modify the associations (P-interactions > 0.14).

Conclusions
Serum n-6 PUFAs were not associated with increased inflammation in men. In contrast, the main n-6 PUFA linoleic acid had a strong inverse association with the key inflammation marker, CRP.

Les boosters de NO pour maigrir sur le long terme?

14/12/2017 | Etudes Perte de poids et Etudes Anti-âge et Etudes sur les boosters sexuels et la sexualité

 

Ca fait quand même un peu beaucoup…

Sildenafil induces browning of subcutaneous white adipose tissue in overweight adults
Metabolism Volume 78, January 2018, Pages 106-117

To investigate that short-term treatment of sildenafil can induce browning of subcutaneous white adipose tissue (sWAT) in human adults.

Design
A randomized, double-blinded, placebo-controlled, parallel group trial.

Methods
Sixteen eligibility overweight male subjects were recruited, comparing 100 mg/day sildenafil versus an identical placebo therapy for 7 days. sWAT samples were collected from subjects before and after 7-day sildenafil or placebo interventions.

Results
The results showed that multilocular UCP1-positive adipocytes existed in sWAT samples from subjects after sildenafil treatment. Compared to before treatment in both group as well as after treatment in placebo, sildenafil significantly decreased adipocyte size, increased the expressions of UCP1 protein and mRNA, mitochondrial density, and leak respiratory capacity in sWAT (p < 0.05). Sildenafil also increased plasma cyclic guanosine-3′,5′-monophosphate (cGMP) and catecholamine concentrations (p < 0.05), and consequently activated the expressions of vasodilator-stimulated phosphoprotein (VASP) and p70 ribosomal S6 kinase 1 (S6 K1) (p < 0.05). Sildenafil did not activate typical brown fat.

Conclusions
The current findings demonstrate that sildenafil can induce browning of sWAT in human, and this action may be through cGMP-dependent protein kinase I and mechanistic/mammalian target of rapamycin (mTOR) signaling pathways. Sldenafil may be a promising treatment for metabolic disease.

Les protéines laitières rapides ont un impact à court et à long terme sur la glycémie

05/11/2017 | Etudes sur les hormones et Etudes Compléments alimentaires et Etudes Perte de poids et Etudes Anti-âge

 

Cela explique que l’on peut ne pas le sentir au début puis y devenir sensible

Comparison between pre–exercise casein peptide and intact casein supplementation on glucose tolerance in high–fat diet–fed mice

Yutaka Matsunaga         Applied Physiology, Nutrition, and Metabolism, 2017

We hypothesized that along with exercise, casein peptide supplementation would have a higher impact on improving glucose tolerance than intact casein. Male six–week–old ICR mice were provided a high–fat diet to induce obesity and glucose intolerance. The mice were randomly divided into four treatment groups: control (Con), endurance training (Tr), endurance training with intact casein supplementation (Cas+Tr), and endurance training with casein peptide supplementation (CP+Tr). The mice in each group were orally administrated water, intact casein, or casein peptide (1.0 mg/g BW, everyday), and then subjected to endurance training (15–25 m/min, 60 min, 5 times/week for 4 weeks) on a motor–driven treadmill 30 min after ingestion. Our results revealed that total intra–abdominal fat was significantly lower in CP+Tr than in Con (p<0.05). Following an oral glucose tolerance test, the blood glucose area under the curve (AUC) was found to be significantly smaller for CP+Tr than for Con (p<0.05). Moreover, in the soleus muscle, GLUT4 protein levels were significantly higher in CP+Tr than in Con (p<0.01). However, intra–abdominal fat, blood glucose AUC, and GLUT4 protein content in the soleus muscle did not alter in Tr and Cas+Tr when compared with Con. These observations suggest that pre–exercise casein peptide supplementation has a higher effect on improving glucose tolerance than intact casein does in high–fat diet–fed mice.

L’acide férulique fait un comeback pour la prise de muscle

04/11/2017 | Etudes Compléments alimentaires et Etudes Anti-âge

 

Ferulic Acid Promotes Hypertrophic Growth of Fast Skeletal Muscle in Zebrafish Model
Ya We     Nutrients 2017, 9(10), 1066

As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass.

To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.

L’équilibre en sodium est plus compliqué qu’il n’y parait

09/05/2017 | Etudes sur les hormones et Etudes Compléments alimentaires et Etudes Perte de poids et Etudes Anti-âge

 

Increased salt consumption induces body water conservation and decreases fluid intake
Natalia Rakova       J Clin Invest April 17, 2017 - More info

The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions.

METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance.

RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion.

CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion.

Vitamine P4 contre la fatigue

30/04/2017 | Etudes Compléments alimentaires et Etudes Perte de poids et Etudes Anti-âge

 

Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats

Mohammad Zamanian         Revue canadienne de physiologie et pharmacologie 2017

Dans les présents travaux, nous avons étudié l’effet de la troxérutine (TRX) sur la fatigue musculaire et l’expression des gènes Bcl-2 et Bax dans le tissu hépatique de rat. Nous avons réparti aléatoirement 40 rats Wistar mâles dans les quatre groupes suivants : témoin et administration de TRX à 75 (TRX75), 150 (TRX150) et 300 mg/kg par jour (TRX300). Les groupes TRX et placebo ont reçu pendant 7 jours de la TRX et de l’eau, respectivement. Le 7e jour, tous les animaux ont été euthanasiés immédiatement après un test de nage menant à l’épuisement, et nous avons mesuré plusieurs paramètres biochimiques liés à la fatigue et à l’expression des gènes Bcl-2 et Bax dans le tissu hépatique. Nos résultats ont montré que dans le groupe TRX300, le temps de nage écoulé avant l’épuisement était 1,2 fois plus élevé que dans le groupe témoin (résultats statistiquement significatifs : P < 0,001).

Dans le groupe TRX300, l’activité de l’ALT diminuait et l’activité hépatique de la SOD augmentait de façons nettement plus marquées que dans le groupe témoin (P < 0,05 et P < 0,01, respectivement). De plus, la TRX entraînait une diminution de l’expression de l’ARNm du gène Bax et une augmentation du rapport Bcl-2/Bax nettement plus marquées que dans le groupe témoin (P < 0,001 dans les deux cas).

D’après nos données, la TRX exerce une action anti-apoptotique et hépatoprotectrice à la suite d’un exercice de nage menant à l’épuisement.

Page 3 sur 69 pages  <  1 2 3 4 5 >  Last »